Crystal and Molecular Structure of exo-7,11-methano-5,6a,7,7a,10,11,11a-octahydrobenz[c]indeno[5,6-e]thiazine 6 -Oxide

By D. J. Pointer and J. B. Wilford,* Department of Chemistry, Teesside Polytechnic, Borough Road, Middles brough, Teesside TS1 3BA
K. M. Chui, Department of Chemical Crystallography, South Parks Road, Oxford

Abstract

The structure of the title compound has been determined by a three-dimensional X-ray analysis. The monoclinic unit cell (space group $P 2_{1} / c$) has dimensions $a=7.02 b=12.86 c=14.35 \AA$ and $\beta=92 \cdot 04^{\circ}$ for $Z=4$. The structure was solved by centrosymmetric symbolic addition and refined by least-squares calculations to $R 0.103$ for 2201 reflections. The molecule has exo-stereochemistry and is a racemic compound. with enantiomeric molecules forming centrosymmetric dimers through pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{S}$ hydrogen bonds.

THE ($4 \pi+2 \pi$) cycloaddition reactions involving cyclopentadiene usually give predominantly the thermodynamically more stable endo-stereomers as adducts, ${ }^{1}$ although a recent X-ray study ${ }^{2}$ has suggested that the exo-stereomer is favoured with a quinone as the dienophile. With N-sulphinylaniline, cyclopentadiene has been reported ${ }^{3}$ to give the $1: 2$-adduct (I) shown later ${ }^{4}$

(I)

(II)
to be the 1:2-adduct (II) in which N-sulphinylaniline has acted as the diene, and to be identical with the 1:1-adduct obtained using the dimer dicyclopentadiene. An assignment of the stereochemistry might be deduced as exo by n.m.r. evidence of comparison with the norbornene adduct. ${ }^{5}$ That the orientation of the unsymmetrical diene system, N-sulphinylaniline also influences the stereochemistry, is shown by the present X-ray study which finds the principle product to be a racemic compound ${ }^{6}$ having the exo-configuration.

EXPERIMENTAL

exo-7,11-Methano-5,6a, 7,7a,10,11,11a-octahydrobenz[c]-indeno[5,6-e]thiazine 6-Oxide.-Recrystallisation from methanol of material prepared as in ref. 4 gave aciculiform crystals, m.p. $254^{\circ} \mathrm{C}$ (decomp.) (Found: C, 70.72 ; H, 6.52 ; $\mathrm{N}, 5.30$; S, 12.00 . Calc. for $\mathrm{C}_{16} \mathrm{H}_{17}$ NOS: C, 70.81 ; H, $6.31 ; \mathrm{N}, 5.16 ; \mathrm{S}, 11.81 \%$) ; $\nu_{\text {max. }}$ (KBr disc): $3185(\mathrm{~N}-\mathrm{H})$, 1615 (aliph. $\mathrm{C}=\mathrm{C}$, weak), 1600 (arom. $\mathrm{C}=\mathrm{C}$), and 1037 $(\mathrm{S}=\mathrm{O}) \mathrm{cm}^{-1} ; \lambda_{\text {max }}(\mathrm{EtOH}): 241(\varepsilon, 6400)$, and $280 \mathrm{~nm}(\varepsilon$, 1120); n.m.r. data (- units measured on a Perkin-Elmer $R 12 \mathrm{~A}$ spectrometer at 60 MHz for a solution in trifluoroacetic acid with tetramethylsilane as reference): $2.9(3 \mathrm{H}$, $\mathrm{s}, \mathrm{t}, \mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3), 3 \cdot 2(1 \mathrm{H}, \mathrm{q}, \mathrm{C}-4), 4 \cdot 1,4 \cdot 4(2 \mathrm{H}, 2 \mathrm{~d}, \mathrm{C}-8$,
${ }_{1}^{1} \mathrm{~J}$. Sauer, Angew. Chem. Internat. Edn., 1966, 5, 211; 1967, 6. 16 .
2^{2} D. J. Pointer, J. B. Wilford, and O. J. R. Hodder, J. Chem. Soc. (B), 1971, 2009.
${ }^{3}$ E. 'G. Kataev, V. V. Plemenkov, Zhur. obshchei. Khim., 1962, 32, 3817 (Chem. Abs., 1963, 58, 12544f).
${ }^{4}$ G. R. Collins, J. Org. Chem., 1964, 29, 1688.
${ }^{5}$ A. Macaluso and J. Hamer, J. Org. Chem., 1967, 32, 506.
${ }^{6} \mathrm{E}$. I. Eliel, 'Stereochemistry of Carbon Compounds,' McGraw-Hill, New York, 1962, p. 44.
$\mathrm{C}-9$), $6.6(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-5$ removed by deuteriation), $8.5(2 \mathrm{H}, \mathrm{d}$, C-12). No endo-stereomer was obtained.

Crystal Data. $-\mathrm{C}_{16} \mathrm{H}_{17}$ NOS, $M=\mathbf{2 7 1 \cdot 4}$, Monoclinic, $a=$ $7.018(5), \quad b=12.86(1), \quad c=14.35(1) \quad \AA, \quad \beta=92.04(2)^{\circ}$, $U=1293 \AA^{3}, D_{\mathrm{c}}=1 \cdot 39, Z=4, D_{\mathrm{m}}=1.39$ (by flotation), $F(000)=576 . \quad$ Cu- K_{α} radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=$ $20.7 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / c\left(C_{2 h}^{5}\right.$, No. 14).

A needle-shaped crystal of cross-section smaller than the optimum size (1 mm) was used to obtain intensity data on a Hilger and Watts four-circle diffractometer. The $\omega-2 \theta$ scan method,? with balanced filters for $\theta<30^{\circ}$, and a β-filter only for $30^{\circ}<\theta<70^{\circ}$ was used to obtain 2295 reflections having $I>3 \sigma(I)$. Corrections were made for Lorentz and polarisation effects, and for absorption ${ }^{8}$ using the experimentally determined variation in intensity with crystal orientation for the $\overline{4} 00$ reflection.
Structure Determination and Refinement.-An overall temperature factor of $3.2 \AA^{2}$ was obtained from a Wilson plot and used to calculate normalised structure factors. ${ }^{9}$ The structure was solved by symbolic addition by use of a programme for centrosymmetric structures. ${ }^{10}$ The signs of 431 reflections with $|E|>1 \cdot 1$ were determined in terms of one symbol, and a Fourier synthesis using the least probable solution based on these reflections revealed all the non-hydrogen atoms in the asymmetric unit. Full matrix least-squares refinement with isotropic temperature factors gave $R \quad 0.14$. When all atoms were given anisotropic temperature factors, R decreased to $0 \cdot 12$. A difference Fourier map then clearly revealed all the hydrogen atom positions, and these were included with isotropic temperature factors in the calculation of structure factors. Alternate rounds of refinement of positional parameters for all atoms except hydrogen, and temperature factors for all atoms were carried out. The hydrogen atom positions were then adjusted from a difference Fourier map and final cycles of least-squares refinement were then continued until convergence without further adjustment of hydrogen atom positions and temperature factors. A weighting scheme of the form: $1 / w=1+\left[F_{0}-a / b\right]^{2}$ with $a=463$ and $b=741$ was included in all but the initial cycle of refinement, and 94 reflections having calculated structure factors <0.6 on the absolute scale were not included in the final cycles, after which R was $0 \cdot 103$.
' U. W. Arndl and B. J. M. Willis, ' Single Crystal Difiractometry; Cambridge University Press, Cambridge, 1966, p. 26 .

8 DR4C3 Data reduction programme with absorption corrections, Oxford University Chemical Crystallography Laboratory, 1970.
'Autocode structure analysis programme (November tape), O. J. R. Hodder and J. S. Rollett, Oxford Einiversity, 1968.

10 Centro-symmetric symbolic addition programme, O.J. R. Hodder, C. K. Prout, and J. S. Rollett, 1968.

RESULTS AND DISCUSSION

The Diels-Alder reaction, now considered to be a concerted ($4 \pi+2 \pi$) cycloaddition, ${ }^{11}$ usually shows a preference for endo-addition for which several explanations have been advanced, ${ }^{11,12}$ usually involving interactions between atoms not bonded in the adduct. The eiddo-preference has recently ${ }^{13}$ been interpreted in terms of extending conjugation in the 2π system. Cyclopentadiene, usually the 4π system, becomes the 2π system in the reaction with N-sulphinylaniline where presumably it first dimerises and reacts as an alkene

Table 1

Fractional atomic co-ordinates and isotropic vibrational amplitudes $\left(\AA^{2}\right)$ with their estimated standard deviations in parentheses

	x / a	y / b	$z / 0$	$U_{\text {190 }}$
C(1)	0.4202(8)	$0.1677(4)$	$0 \cdot 1548(4)$	
$\mathrm{C}(2)$	0.5273 (9)	$0 \cdot 1149$ (5)	$0.0906(5)$	
$\mathrm{C}(3)$	$0.5550(9)$	$0 \cdot 1587(5)$	$0.0038(5)$	
$\mathrm{C}(4)$	$0 \cdot 4810$ (8)	$0.2552(5)$	-0.0182(4)	
$\mathrm{C}(4 \mathrm{a})$	$0 \cdot 3719$ (7)	$0 \cdot 3083$ (4)	$0 \cdot 0468$ (4)	
N(5)	$0.2924(7)$	$0 \cdot 4070$ (4)	$0 \cdot 0225$ (3)	
S(6)	$0.3022(2)$	$0 \cdot 5006$ (1)	$0 \cdot 1030$ (1)	
O (6)	0.5025 (5)	$0 \cdot 5143(3)$	$0 \cdot 1411$ (3)	
C (6a)	0.1817(7)	$0 \cdot 4342$ (4)	$0 \cdot 1946$ (4)	
C(7)	-0.0381(8)	$0 \cdot 4456$ (5)	$0 \cdot 1844$ (4)	
C (7a)	-0.1245(8)	$0 \cdot 4163$ (5)	$0 \cdot 2794(4)$	
C(8)	-0.0218(9)	$0 \cdot 4531$ (5)	$0 \cdot 3671$ (4)	
$\mathrm{C}(9)$	0.0455 (9)	$0 \cdot 3725$ (5)	$0 \cdot 4182$ (4)	
$\mathrm{C}(10)$	-0.0065(9)	$0 \cdot 2697$ (5)	$0 \cdot 3778$ (4)	
$\mathrm{C}(10 \mathrm{a})$	-0.1048(8)	$0 \cdot 2957$ (5)	$0 \cdot 2836(4)$	
C(11)	0.0042 (8)	$0 \cdot 2718$ (5)	$0 \cdot 1950$ (4)	
C(1la)	0.2123 (7)	$0 \cdot 3142(4)$	$0 \cdot 2035$ (3)	
C(11b)	$0 \cdot 3387(7)$	$0 \cdot 2646$ (4)	$0 \cdot 1335$ (4)	
$\mathrm{C}(12)$	-0.0909(8)	$0.3488(6)$	$0 \cdot 1259(4)$	
$\mathrm{H}(1)$ *	0.400	$0 \cdot 120$	0.222	0.048
$\mathrm{H}(2)$	$0 \cdot 600$	0.040	0.111	$0 \cdot 059$
$\mathrm{H}(3)$	$0 \cdot 643$	0.120	-0.042	0.059
$\mathrm{H}(4)$	$0 \cdot 473$	0.296	-0.083	0.050
$\mathrm{H}(\mathbf{0})$	0.323	0.434	-0.050	0.044
H (6a)	0.223	0.474	0.258	0.039
$\mathrm{H}(7)$	-0.090	$0 \cdot 320$	0.161	0.044
$\mathrm{H}(\mathrm{a})$	-0.267	0.450	$0 \cdot 275$	0.045
$\mathrm{H}(8)$	0.007	0.534	0.383	0.052
H(9)	$0 \cdot 100$	0.380	0.487	0.053
$\mathrm{H}(101)$	-0.100	0.220	0.425	0.057
$\mathrm{H}(102)$	$0 \cdot 117$	0.210	0.361	0.057
$\mathrm{H}(10 \mathrm{a})$	-0.243	0.250	0.275	0.046
$\mathrm{H}(11)$	$0 \cdot 000$	$0 \cdot 180$	$0 \cdot 183$	0.047
$\mathrm{H}(1 \mathrm{l})^{\text {a }}$	0.277	0.290	0.272	0.038
$\mathrm{H}(121)$	-0.050	0.360	0.050	0.053
$\mathrm{H}(122)$	-0.233	0.330	0.128	0.053

* Hydrogen atoms are numbered according to the atom to which they are bonded.
having no extending conjugation. N-Sulphinylaniline, partly utilising the aromatic ring, acts as the diene which with two possible orientations in the transition state can give a racemic product having the exo-stereochemistry presently reported.
The conformation of the molecule is depicted in Figure 1, which gives the atomic numbering system, and Tables 1 and 2 list the final atom parameters with

[^0]Table 2
Anisotropic temperature factors $\left(\AA^{2}\right)$

				2	2	2
Atom	$10^{3} U_{11}$	$10^{3} U_{22}$	$10^{3} U_{33}$	$\times 10^{3} U_{12}$	$\times 10^{3} U_{13}$	$\times 10^{3} U_{33}$
C(1)	43(3)	38(3)	68(3)	10(5)	0 (6)	-3(5)
$\mathrm{C}(2)$	44(4)	$49(3)$	85(3)	14(5)	1 (6)	-20(6)
C(3)	43 (4)	59 (4)	80(5)	-2(6)	$23(6)$	-35(7)
C(4)	42 (3)	$54(3)$	58(4)	$-5(5)$	$12(5)$	-25(6)
$\mathrm{C}(4 \mathrm{a})$	34(3)	44(3)	44(3)	-1(4)	1 (4)	$-10(4)$
N(5)	48(3)	46(2)	$39(2)$	1 (4)	7(4)	$-9(3)$
S(6)	40 (1)	$39(1)$	41 (1)	-2(1)	0 (1)	$5(1)$
$\mathrm{O}(6)$	$39(3)$	63(2)	$52(2)$	-26(4)	$-12(3)$	-2(4)
C(6a)	$38(3)$	$38(3)$	$42(3)$	$5(5)$	$-5(4)$	-6(4)
$\mathrm{C}(7)$	36(3)	$50(3)$	49(3)	14(5)	-4(5)	8 (5)
C(7a)	$37(3)$	53(3)	46(3)	$5(5)$	12 (5)	7 (5)
C(8)	54(4)	59(4)	$51(4)$	$-3(6)$	$15(5)$	-11(6)
C(9)	$54(4)$	68(4)	40(3)	11 (6)	$7(5)$	$-1(5)$
$\mathrm{C}(10)$	61 (4)	55(4)	$55(3)$	150	17(5)	15 (6)
C(10a)	41(3)	53 (3)	48(3)	-16 (5)	$8(5)$	-5(5)
C(11)	39 (3)	$54(3)$	52 (3)	-28(5)	9 (5)	$-18(5)$
C(1la)	34(3)	38(3)	41(3)	3(4)	-2(4)	10(4)
C(11b)	$36(3)$	$42(3)$	43(3)	1 (4)	-1(4)	-11(4)
C(12)	$3 \mathrm{5}(3)$	79(4)	47(3)	-20 (6)	$-13(5)$	$-1(6)$

The anisotropic temperature factor is of the form $-\log T$ $=2 \pi^{2}\left[U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{23} f l b^{*} c^{*}+\right.$
$\left.2 U_{31} h l a^{*} c^{*}+2 U_{12} h k a^{*} b^{*}\right]$.

Table 3

Interatomic distances (\AA) angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses

(a) Bonded distances not involving hydrogen			
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.387(9)$	$\mathrm{C}(7)-\mathrm{C}(7 \mathrm{a})$	
$\mathrm{C}(1)-\mathrm{C}(11 \mathrm{~b})$	$1.400(8)$	$\mathrm{C}(7)-\mathrm{C}(12)$	$1.558(8)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.388(10)$	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(8)$	$1.505(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.376(9)$	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(10 \mathrm{a})$	$1.5058(8)$
$\mathrm{C}(4)-\mathrm{C}(4 \mathrm{a})$	$1.406(8)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.346(9)$
$\mathrm{C}(4 \mathrm{a})-\mathrm{N}(5)$	$1.424(7)$		
$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(11 \mathrm{~b})$	$1.392(7)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.483(9)$
$\mathrm{N}(5)-\mathrm{S}(6)$	$1.668(5)$	$\mathrm{C}(10)-\mathrm{C}(10 \mathrm{a})$	$1.532(9)$
$\mathrm{S}(6)-\mathrm{O}(6)$	$1.501(4)$	$\mathrm{C}(10 \mathrm{a})-\mathrm{C}(11)$	$1.539(8)$
$\mathrm{S}(6)-\mathrm{C}(6 \mathrm{a})$	$1.803(5)$	$\mathrm{C}(11)-\mathrm{C}(11 \mathrm{a})$	$1.560(8)$
$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(7)$	$1.552(8)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.536(9)$
$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(11 \mathrm{a})$	$1.562(7)$	$\mathrm{C}(11 \mathrm{a})-\mathrm{C}(11 \mathrm{~b})$	$1.506(7)$

(b) Bonded distances involving hydrogen (all estimated standard deviations ca. $0.03 \AA$)

$\mathrm{C}(1)-\mathrm{H}(1)$	1.16	$\mathrm{C}(8)-\mathrm{H}(8)$	1.08
$\mathrm{C}(2)-\mathrm{H}(2)$	1.12	$\mathrm{C}(9)-\mathrm{H}(9)$	1.03
$\mathrm{C}(3)-\mathrm{H}(3)$	1.04	$\mathrm{C}(10)-\mathrm{H}(101)$	1.15
$\mathrm{C}(4)-\mathrm{H}(4)$	1.07	$\mathrm{C}(10)-\mathrm{H}(102)$	1.19
$\mathrm{~N}(\overline{5})-\mathrm{H}(5)$	1.12	$\mathrm{C}(10 \mathrm{a})-\mathrm{H}(10 \mathrm{a})$	1.14
$\mathrm{C}(6 \mathrm{a})-\mathrm{H}(6 \mathrm{a})$	1.08	$\mathrm{C}(11)-\mathrm{H}(11)$	1.19
$\mathrm{C}(7)-\mathrm{H}(7)$	1.07	$\mathrm{C}(11 \mathrm{a})-\mathrm{H}(11 \mathrm{a})$	1.11
$\mathrm{C}(7 \mathrm{a})-\mathrm{H}(7 \mathrm{a})$	1.09	$\mathrm{C}(12)-\mathrm{H}(121)$	1.15

(c) Interbond angles			
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11 \mathrm{~b})$	121.1(5)	$C(7)-C(7 a)-C(10 a)$	103.8(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.6(6)	$\mathrm{C}(8)-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(10 \mathrm{a})$	104.0(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	120.5 (6)	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(8)-\mathrm{C}(9)$	$111.2(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(4 \mathrm{a})$	$119 \cdot 7$ (6)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	113.4(6)
$\mathrm{C}(4)-\mathrm{C}(4 \mathrm{a})-\mathrm{C}(11 \mathrm{~b})$	$120 \cdot 6$ (5)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(10 \mathrm{a})$	104.4(5)
$\mathrm{C}(4)-\mathrm{C}(4 \mathrm{a})-\mathrm{N}(5)$	$119.2(5)$	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(10)-\mathrm{C}(10 \mathrm{a})$	$106.7(5)$
$\mathrm{N}(5)-\mathrm{C}(4 \mathrm{a})-\mathrm{C}(11 \mathrm{~b})$	$120 \cdot 1$ (5)	$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(10 \mathrm{a})-\mathrm{C}(11)$	102.2(4)
$\mathrm{C}(4 \mathrm{a})-\mathrm{N}(5)-\mathrm{S}(6)$	$117.8(3)$	$\mathrm{C}(10)-\mathrm{C}(10 \mathrm{a})-\mathrm{C}(11)$	117.7(5)
$\mathrm{N}(5)-\mathrm{S}(6)-\mathrm{O}(6)$	110.6(2)	C(10a)-C(11)-C(11a)	110.9(4)
$N(5)-S(6)-C(6 a)$	98.9 (2)	$\mathrm{C}(10 \mathrm{a})-\mathrm{C}(11)-\mathrm{C}(12)$	$100 \cdot 8(5)$
$\mathrm{O}(6)-\mathrm{S}(6)-\mathrm{C}(6 \mathrm{a})$	104.4(2)	$\mathrm{C}(11 \mathrm{a})-\mathrm{C}(11)-\mathrm{C}(12)$	102.1(4)
$\mathrm{S}(6)-\mathrm{C}(6 \mathrm{a})-\mathrm{C}(7)$	112.1(4)	$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(11 \mathrm{a})-\mathrm{C}(11 \mathrm{~b})$	116.5(4)
$\mathrm{S}(6)-\mathrm{C}(6 \mathrm{a})-\mathrm{C}(11 \mathrm{a})$	117.4(4)	$\mathrm{C}(11)-\mathrm{C}(11 \mathrm{a})-\mathrm{C}(11 \mathrm{~b})$	$111.8(5)$
$\mathrm{C}(7)-\mathrm{C}(6 \mathrm{a})-\mathrm{C}(11 \mathrm{a})$	103.6(4)	$\mathrm{C}(11 \mathrm{a})-\mathrm{C}(11 \mathrm{~b})-\mathrm{C}(4 a)$	123•1(5)
$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(7)-\mathrm{C}(7 \mathrm{a})$	108.1(4)	$\mathrm{C}(11 \mathrm{a})-\mathrm{C}(11 \mathrm{~b})-\mathrm{C}(1)$	118.4(5)
$\mathrm{C}(6 \mathrm{a})-\mathrm{C}(7)-\mathrm{C}(12)$	101.2(4)	$\mathrm{C}(4 \mathrm{a})-\mathrm{C}(11 \mathrm{~b})-\mathrm{C}(1)$	118.3(5)
$\mathrm{C}(7 \mathrm{a})-\mathrm{C}(7)-\mathrm{C}(12)$	100.8(4)	$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	94.5(5)
$\mathrm{C}(7)-\mathrm{C}(7 \mathrm{a})-\mathrm{C}(8)$	117.8(5)		

Table 3 (Continued)
(d) Intermolecular non-bonded distances $<4.5 \AA$

| $\mathrm{C}(1) \cdots \mathrm{O}\left(6^{11}\right)$ | $3 \cdot 557(7)$ | $\mathrm{N}\left(5^{1}\right) \cdots \mathrm{O}\left(6^{11}\right)$ | $2 \cdot 975(6)$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(1) \cdots \mathrm{C}\left(12^{111}\right)$ | $4 \cdot 180(9)$ | $\mathrm{H}\left(5^{1}\right) \cdots \mathrm{O}\left(6^{11}\right)$ | $1 \cdot 94(3)$ |

$\mathrm{C}(1) \cdots \mathrm{C}\left(12^{111}\right) \quad 4 \cdot 180(9) \quad \mathrm{H}(5) \cdots \mathrm{O}\left(6^{11}\right) \quad 1 \cdot 94(3)$
$\mathrm{C}(2) \cdots \mathrm{C}\left(12^{111}\right) \quad 4.047(9)$
$\mathrm{C}(3) \cdots \mathrm{C}\left(12^{115}\right) \quad 3 \cdot 862(9)$
Roman numerals as superscripts refer to the equivalent positions relative to the reference molecule at x, y, z :

$$
\text { I } x, \frac{1}{2}-y, \frac{1}{2}+z \quad \text { II } 1-x, y-\frac{1}{2}, \frac{1}{2}-z
$$

estimated standard deviations and anisotropic temperature factors.*

Interatomic distances and angles (Table 3) are significantly less accurate for hydrogen atoms than all others, since no refinement of hydrogen atom coordinates was carried out, and hence no reliable estimates of the errors are available. The $S(6)-O(6)$ bond length $[1.501(4) \AA]$ is longer than the mean values of $1.45 \AA$

Figure 1 Molecular structure projected on the unit-cell plane (of equation $-0.578 X-0.744 Y-0.336 Z+3.16=0$), showing the atomic numbering system
quoted ${ }^{14}$ for 5,5 -dimethyl- N-methylsulphonylsulphilimine and the values 1.425 and $1.443 \AA$ for methanesulphonanilide, ${ }^{15}$ both of which have adjacent nitrogen atoms, but agrees closely with the value of $1.502(9)$

* Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20388 ($16 \mathrm{pp} ., 1$ microfiche). For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.
\dagger The equation of the plane is $-0.816 x-0.444 y-0.370 z+$ $4 \cdot 143=0$ where x, y, and z in \AA are related to the unit-cell directions a, b, and c respectively.
found ${ }^{16}$ for the extensively hydrogen-bonded methanesulphinic acid. All bond lengths in the cyclopentadiene dimer part of the molecule conform closely to the

Figure 2 The molecular packing viewed down the a axis. Molecules designated A and B are enantiomeric
reported ${ }^{17}$ dimensions for α-3-bromobenzoyloxy(cyclopentadiene dimer), and the bridgehead angle $\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$ of $94.5(5)^{\circ}$ is similar $\left(92.7^{\circ}\right)$ in that molecule. The carbon atoms of the benzene ring are close to their least-squares best plane \dagger and bond lengths and valency angles are acceptably similar to literature values.

The molecular packing within the crystal cell is shown in Figure 2. Two enantiomeric molecules form a centrosymmetric dimer through a symmetrical pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The total $\mathrm{N}-\mathrm{H} \cdot \mathrm{O}$ distance is $2.975(6)$, the $\mathrm{N}-\mathrm{H}$ bond is $1 \cdot 12(3)$, and the $\mathrm{H} \cdots \mathrm{O}$ distance is $1.94(3) \AA$, with the angle at the hydrogen atom 151°; all comparable with the corresponding values given for methanesulphonanilide (ref. 15 and refs. therein).

We thank Professor H. M. Powell for the use of the diffractometer, and the Oxford University Computing Laboratory for computer time.
[2/122 Received, 20th January, 1972]

[^1]
[^0]: 11 R. B. Woodward, R. Hoffmann, J. Amer. Chem. Soc., 1965, 87, 395, 2046, 2511, 4388.

 13 I. Salem, J. Amer. Chon. Soc., 1968, 90, 543; W. C. Herndon axd L. H. Hall, Tetrahedron Letters, 1967, 3095.
 ${ }_{13}$ K. N. Houk, Tetrahedron Letters, 1970, 2621.

[^1]: 14 A. Kalman, Acta Cryst., 1967, 22, 501.
 15 H. P. Klug, Acta Cryst., 1968, B, 84, 792.
 ${ }^{16}$ K. Seff, E. G. Heidner, M. Meyers, and K. N. Trueblood, Acta Cryst., 1969, B, 25, 350 .
 ${ }_{17}$ R. Destro, C. M. Gramaccioli, and M. Simonetta, Chem. Comm., 1968, 568.

